eckity.sklearn_compatible.sk_classifier
1from sklearn.base import ClassifierMixin 2from sklearn.utils.validation import check_is_fitted 3 4from eckity.sklearn_compatible.sklearn_wrapper import SklearnWrapper 5from eckity.sklearn_compatible.classification_evaluator import ClassificationEvaluator 6 7 8class SKClassifier(SklearnWrapper, ClassifierMixin): 9 def predict(self, X): 10 """ 11 Compute output using best evolved individual. 12 Use `predict` in a sklearn setting. 13 Input is a numpy array. 14 15 Parameters 16 ---------- 17 X : array-like or sparse matrix of (num samples, num feautres) 18 19 Returns 20 ------- 21 y : array, shape (num samples,) 22 Returns predicted values after applying classification. 23 """ 24 25 # Check is fit had been called 26 check_is_fitted(self) 27 28 clf_eval: ClassificationEvaluator = self.algorithm.get_individual_evaluator() 29 30 # y doesn't matter since we only need execute result and evolution has already finished 31 clf_eval.set_context((X, None)) 32 33 return clf_eval.classify_individual(self.algorithm.best_of_run_) 34 35 def predict_proba(self, X): 36 raise NotImplementedError('not implemented yet') 37 38 def predict_log_proba(self, X): 39 raise NotImplementedError('not implemented yet')
class
SKClassifier(eckity.sklearn_compatible.sklearn_wrapper.SklearnWrapper, sklearn.base.ClassifierMixin):
9class SKClassifier(SklearnWrapper, ClassifierMixin): 10 def predict(self, X): 11 """ 12 Compute output using best evolved individual. 13 Use `predict` in a sklearn setting. 14 Input is a numpy array. 15 16 Parameters 17 ---------- 18 X : array-like or sparse matrix of (num samples, num feautres) 19 20 Returns 21 ------- 22 y : array, shape (num samples,) 23 Returns predicted values after applying classification. 24 """ 25 26 # Check is fit had been called 27 check_is_fitted(self) 28 29 clf_eval: ClassificationEvaluator = self.algorithm.get_individual_evaluator() 30 31 # y doesn't matter since we only need execute result and evolution has already finished 32 clf_eval.set_context((X, None)) 33 34 return clf_eval.classify_individual(self.algorithm.best_of_run_) 35 36 def predict_proba(self, X): 37 raise NotImplementedError('not implemented yet') 38 39 def predict_log_proba(self, X): 40 raise NotImplementedError('not implemented yet')
Sklearn-compatible wrapper to support evolution using sklearn methods.
Parameters
- algorithm (Algorithm): Wrapped Evolutionary algorithm. The Wrapper invokes 'evolve' and 'execute' methods of the algorithm during the fitting and prediction process, respectively.
Attributes
- is_fitted (bool): Determines if the model is fitted (evolved).
def
predict(self, X):
10 def predict(self, X): 11 """ 12 Compute output using best evolved individual. 13 Use `predict` in a sklearn setting. 14 Input is a numpy array. 15 16 Parameters 17 ---------- 18 X : array-like or sparse matrix of (num samples, num feautres) 19 20 Returns 21 ------- 22 y : array, shape (num samples,) 23 Returns predicted values after applying classification. 24 """ 25 26 # Check is fit had been called 27 check_is_fitted(self) 28 29 clf_eval: ClassificationEvaluator = self.algorithm.get_individual_evaluator() 30 31 # y doesn't matter since we only need execute result and evolution has already finished 32 clf_eval.set_context((X, None)) 33 34 return clf_eval.classify_individual(self.algorithm.best_of_run_)
Compute output using best evolved individual.
Use predict
in a sklearn setting.
Input is a numpy array.
Parameters
- X (array-like or sparse matrix of (num samples, num feautres)):
Returns
- y (array, shape (num samples,)): Returns predicted values after applying classification.
Inherited Members
- eckity.sklearn_compatible.sklearn_wrapper.SklearnWrapper
- SklearnWrapper
- algorithm
- fit
- get_params
- set_params
- partial_fit
- sklearn.base.ClassifierMixin
- score