eckity.evaluators.individual_evaluator
1from overrides import overrides 2 3from eckity.event_based_operator import Operator 4 5 6class IndividualEvaluator(Operator): 7 8 def evaluate(self, individual, environment_individuals): 9 """ 10 Updates the fitness score of the given individuals, then returns the best individual 11 12 Parameters 13 ---------- 14 individual: Individual 15 the current individual to evaluate its fitness 16 17 environment_individuals: list of Individuals 18 the individuals in the current individual's environment 19 those individuals will affect the current individual's fitness 20 21 Returns 22 ------- 23 Individual 24 the individual with the best fitness out of the given individuals 25 """ 26 self.applied_individuals = [individual] 27 28 @overrides 29 def apply_operator(self, payload): 30 return self.evaluate(payload[0], payload[1])
7class IndividualEvaluator(Operator): 8 9 def evaluate(self, individual, environment_individuals): 10 """ 11 Updates the fitness score of the given individuals, then returns the best individual 12 13 Parameters 14 ---------- 15 individual: Individual 16 the current individual to evaluate its fitness 17 18 environment_individuals: list of Individuals 19 the individuals in the current individual's environment 20 those individuals will affect the current individual's fitness 21 22 Returns 23 ------- 24 Individual 25 the individual with the best fitness out of the given individuals 26 """ 27 self.applied_individuals = [individual] 28 29 @overrides 30 def apply_operator(self, payload): 31 return self.evaluate(payload[0], payload[1])
def
evaluate(self, individual, environment_individuals):
9 def evaluate(self, individual, environment_individuals): 10 """ 11 Updates the fitness score of the given individuals, then returns the best individual 12 13 Parameters 14 ---------- 15 individual: Individual 16 the current individual to evaluate its fitness 17 18 environment_individuals: list of Individuals 19 the individuals in the current individual's environment 20 those individuals will affect the current individual's fitness 21 22 Returns 23 ------- 24 Individual 25 the individual with the best fitness out of the given individuals 26 """ 27 self.applied_individuals = [individual]
Updates the fitness score of the given individuals, then returns the best individual
Parameters
- individual (Individual): the current individual to evaluate its fitness
- environment_individuals (list of Individuals): the individuals in the current individual's environment those individuals will affect the current individual's fitness
Returns
- Individual: the individual with the best fitness out of the given individuals